Exploring the Role of Generative AI in Enhancing Mobile Learning Adoption: A Case Study with Notion
Mots-clés :
Generative Artificial Intelligence, Mobile Learning Adoption, Notion, UTAUT model, Technology acceptanceRésumé
The rapid advancement of Generative Artificial Intelligence (GenAI) offers new opportunities for enhancing mobile learning adoption, particularly through platforms like Notion. However, adoption remains inconsistent among university students. This study examines the factors influencing the adoption of Notion enhanced with GenAI functionalities, using the Unified Theory of Acceptance and Use of Technology (UTAUT) model. Data were collected from 90 university students and analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM). The results show that Performance Expectancy (PE) is the most significant predictor of Behavioral Intention (BI), highlighting the importance of AI-driven features such as automated content generation and personalized learning recommendations. In contrast, Effort Expectancy (EE), Social Influence (SI), and Facilitating Conditions (FC) do not significantly influence adoption, suggesting that digital familiarity reduces perceived barriers. The study extends the UTAUT model to the context of AI-enhanced mobile learning tools. It recommends emphasizing productivity-enhancing features and intuitive AI automation to increase adoption. Future research should explore longitudinal effects, cross-cultural differences, and additional motivational drivers.
Classification JEL : I21 ; O33 ; C88
Paper type : Empirical Research
Téléchargements
Publiée
Comment citer
Numéro
Rubrique
Licence
© Souha SERRAR 2025

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
Les doit d'auteurs sont détenus par les auteurs sous licence: CC-BY-NC-ND.
Tout travail soumis qui est suspecté de piratage ou de plagiat est entièrement sous la responsabilité de l'auteur qui le soumet.